Ontologies for e-Science Data

MELISSA HAENDEL, PH.D.
CHRIS SHAFFER, M.S. AHIP
OREGON HEALTH & SCIENCE UNIVERSITY
LIBRARY
DECEMBER 9, 2011

OHSU Library

Outline

- 1. Why (as we all know) we need metadata
- 2. How ontologies can be used as a type of metadata
- 3. Science is messy
- 4. The Semantic Web
- 5. Ontologies for data inference
- 6. How libraries can be involved

The problem

Find the information:

Information retrieval from text-based resources is hard:

OMIM Query	# of records	
"large bone"	785	
"enlarged bone"	156	
"big bones"	16	
"huge bones"	4	
"massive bones"	28	
"hyperplastic bones"	12	
"hyperplastic bone"	40	
"bone hyperplasia"	134	
"increased bone	612	
growth"		OREGON

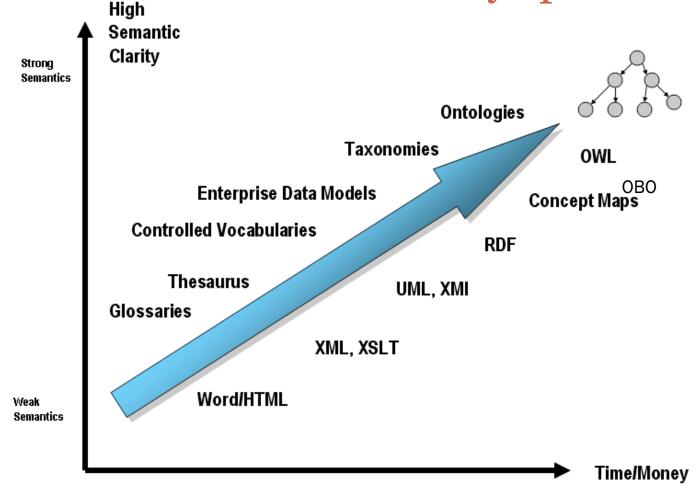
As librarians, you know that metadata standards are used in support of information retrieval

"Now! That should clear up a few things around here!"

The use of an ontology to annotate data can *further* enhance retrieval, analysis and data sharing

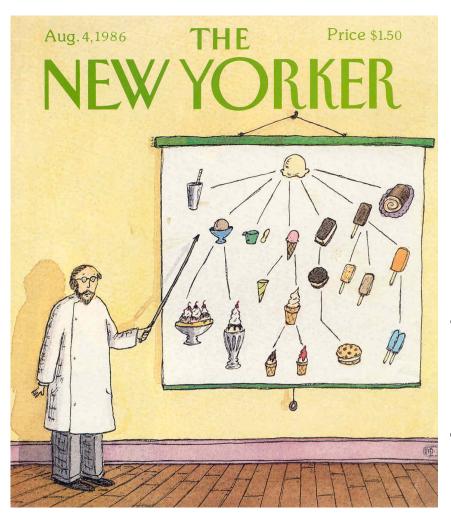
What is an ontology?

Philosophers:


Ontology = The study of *being* as a branch of philosophy

Informaticists:

Domain ontology = representing a specific knowledge base


The controlled vocabulary spectrum

http://www.mkbergman.com/?m=20070516

Reuse of ontologies can help reduce time/money. Libraries can help with this!

How does an ontology differ from other hierarchical vocabularies?

- 1. Hierarchical terms are defined and annotations are made to the definitions
- 2. Relationships between the terms are also defined
- 3. Expressed in a language that can be reasoned across by computers
- 4. Data can easily be published as Linked Open Data

In order to understand the need for ontologies, we must first understand researcher behavior and needs

Research pre-Web:

Do an experiment

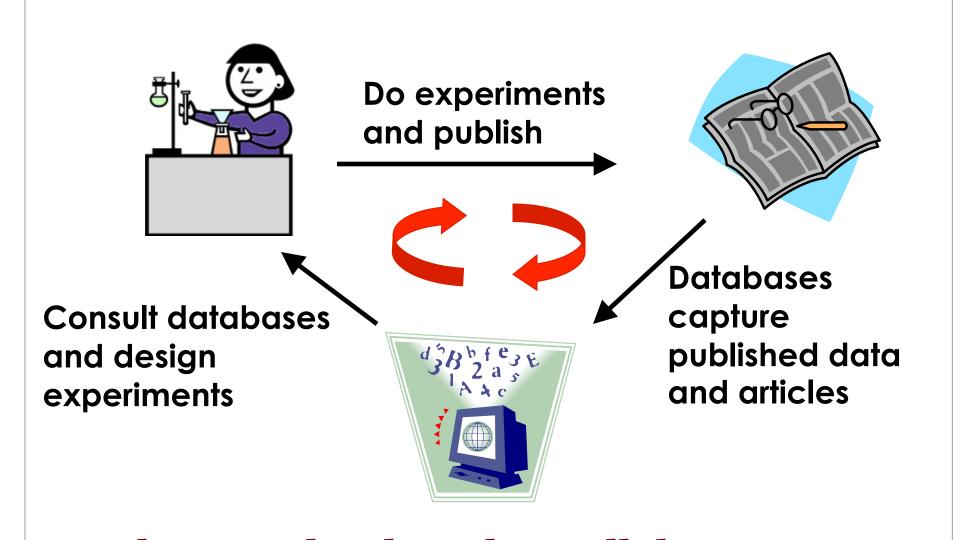
Document in a lab notebook

Publish your results

Research now:

Do experiments and publish

Consult databases and design experiments



Databases
capture
published data
and articles

Research databases save time and money

How do we facilitate this information cycle?

There are bottlenecks at all three steps

Text-mining

Do experiments and publish

Consult databases and design experiments

Databases
capture
published data
and articles

Text mining can be used to extract pertinent information into a database

Biocuration

Do experiments and publish

Consult databases and design experiments

Databases capture published data and articles

Biocurators are scientists who extract data from publications into a database

Author states:

polyclonal anti-Mypt1 Santa Cruz Biotechnology

Which reagent did they mean?

Supplier lists:

PRODUCT NAME	CATALOG #	ISOTYPE	EPITOPE	APPLICATIONS	SPECIES
MYPT1 (E-19) Antibody	sc-17434	goat IgG	N-terminus (h)	WB, IP, IF, ELISA	m, r, h
MYPT1 (N-15) Antibody	sc-17433	goat IgG	N-terminus (h)	WB, IP, IF, ELISA	m, r, h
MYPT1 (H-130) Antibody	sc-25618	rabbit IgG	711-840 (h)	WB, IP, IF, IHC(P), ELISA	m, r, h
MYPT1 (K-18) Antibody	sc-34142	goat IgG	C-terminus (h)	WB, IF, ELISA	m, r, h
MYPT1/2 (C-18) Antibody	sc-34143	goat IgG	C-terminus (h)	WB, IF, ELISA	m, r, h
p-MYPT1 (Thr 853) Antibody	sc-17432	goat IgG	Thr 853 (h)	WB, IP, IF, ELISA	m, r, h
p-MYPT1 (Ser 695) Antibody	sc-33360	rabbit IgG	Ser 695 (h)	WB, IP, IF, ELISA	m, r, h
p-MYPT1 (Thr 696) Antibody	sc-17556	goat IgG	Thr 696 (h)	WB, IF, ELISA	m, r, h
p-MYPT1 (Ser 903) Antibody	sc-17557	goat IgG	Ser 903 (h)	WB, IF	m, r, h

Biocurators nor mining software can read minds

Lack of specificity results in databases missing data

General Information

ZIRC

BLAST GBrowse Expression Antibodies Mutants / Morphants / Tg Anatomy

ehog homolog(1), wu:fc83d08(1)

ZFIN ID: ZDB-GENE-980526-166

sonic hedgehog a Gene Name:

Gene Symbol: shha

Previous Names: shh, syu, vhh1(1), fc83d08, sonic you, sonic

Nomenclature History

Don't see

your data

here?

GENE EXPRESSION (1)

254 figures from 195 publications All Expression Data:

Wild-type Stages, Structures: Blastula:30%-epiboly (4.66h-5.25h) to Adult (90d-730d, breeding adult)

anterior neural keel □, anterior neural rod □, axial chorda mesoderm □, axial mesoderm □ (all 85) ▶

Curated Microarray Expression: GEO (1)

MUTANTS AND TARGETED KNOCKDOWNS

Mutant lines: 32 genotypes

Alleles: b240, shha unspecified, t4, tbq70, tbx392 (all 6) >

Knockdown reagents: MO1-shha (1), MO2-shha (1), MO3-shha (1), MO4-shha (1)

PHENOTYPE

Data: 13 figures from 8 publications

Observed in: adaxial cell □, anatomical system □, eye □, fin □ (all 28) ▶

GENE ONTOLOGY

Ontology 0 **GO Term**

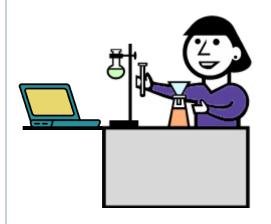
Biological Process adenohypophysis development (more)

extracellular region (more) Cellular Component Molecular Function calcium ion binding (more)

GO Terms (all 65)

Science is messy

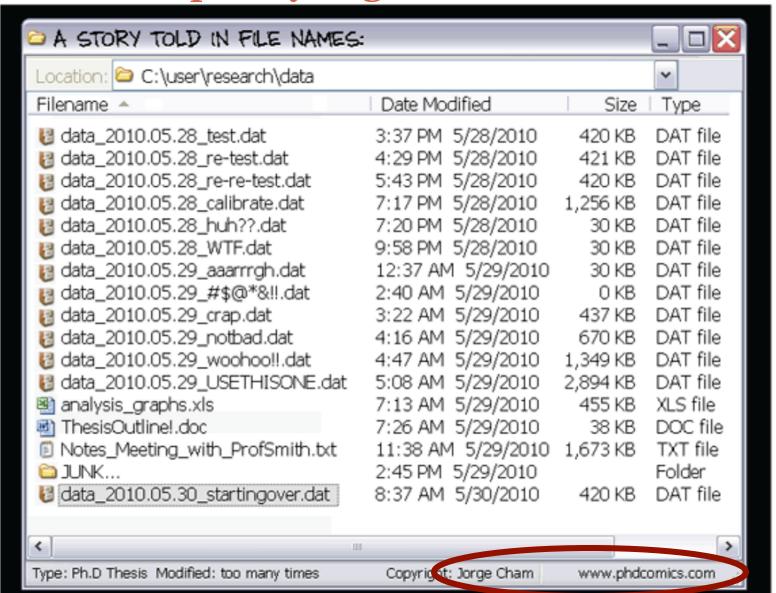
Do experiments and publish


Consult databases and design experiments

Databases
capture
published data
and articles

Science is messy

Researchers don't keep track of their activities or resources very consistently

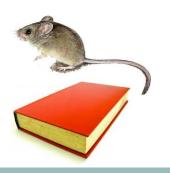


A survey of 48 ecology programs revealed:

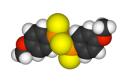
- Over 75% did not require students to use lab notebooks
- Over 50% did not include data management-related instruction in the curriculum (Carly Strasser, 2011)

Today's lab notebook is often a collection of poorly organized files

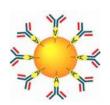
The eagle-i Consortium

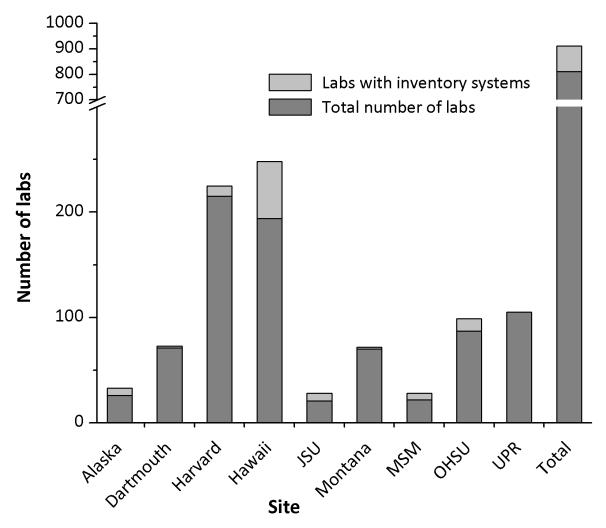

NIH funded pilot project to:

- •Help researchers find scientific resources more easily
- Reduce time-consuming and expensive duplication of resources
- Provide meaningful semantic relationships between them using an ontology

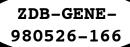

Biologists went into labs to collect information about:

Reagents, protocols, services, instruments, expertise, organisms, training opportunities, software, human study metadata, biological specimens, etc.





Today's labs are similarly disorganized


In an eagle-i survey of labs, 88% of labs had no inventory system of any kind

How do we create a culture of semantic scientists?

Authors, researchers

Databases, computers

We need to speak the same language

Literature/data specificity ↔ database quality and experimental reproducibility

Researchers need our help

Libraries are well-positioned to:

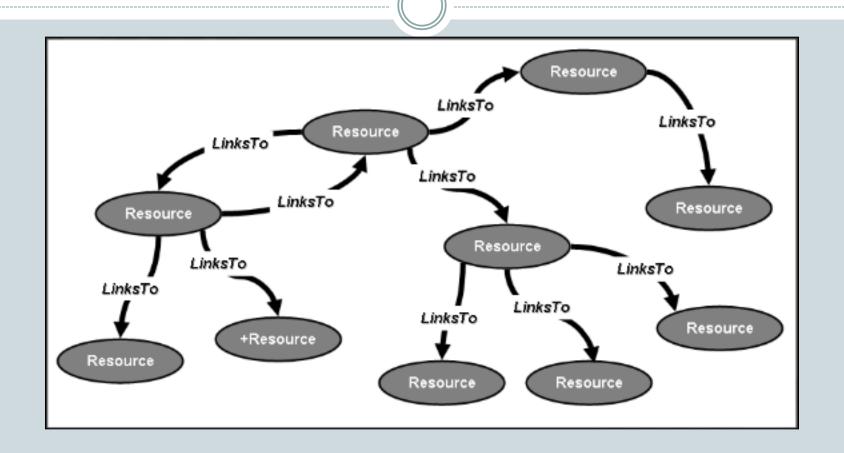
- Facilitate semantic awareness
- Teach information management strategies
- Develop tools and ontologies
- Curate and publish semantically structured data

Questions?

So....what about ontologies?

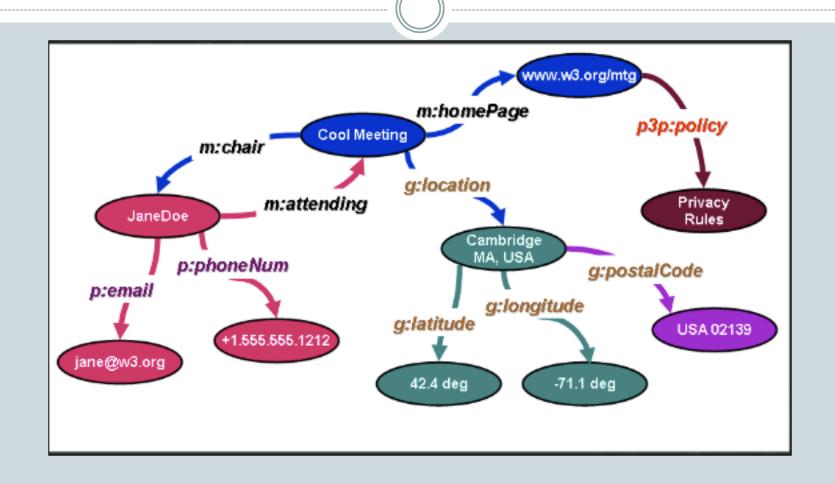
Ontologies enable organizing, filtering, connecting and suggesting data.

The Semantic Web is a way of sharing and reusing structured information.

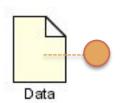

Semantic Web Vision

"The Semantic Web is an extension of the current web in which **information** is given well-defined **meaning**, better enabling computers and people to work in **cooperation**"

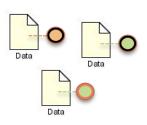
Tim Berners-Lee, James Hendler, Ora Lassila, <u>The Semantic Web,</u> Scientific American, May 2001

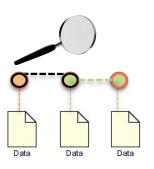


From web of documents....



...to the web of things.




Using an ontology for annotation is similar to other metadata standards

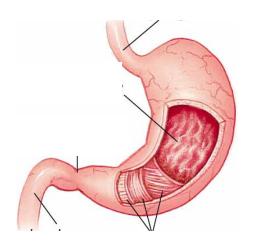
 An ontology term is used as a tag on a piece of data similar to other metadata methods

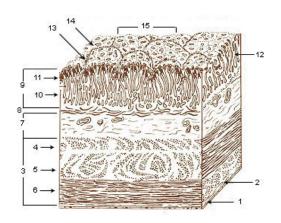
 The goal of the annotation is to add value by enabling: Indexing data Linking data

 Annotation of data using an ontology makes it easier to find and group data via semantic search

What can we do with ontologies that we can't do with simple metadata?

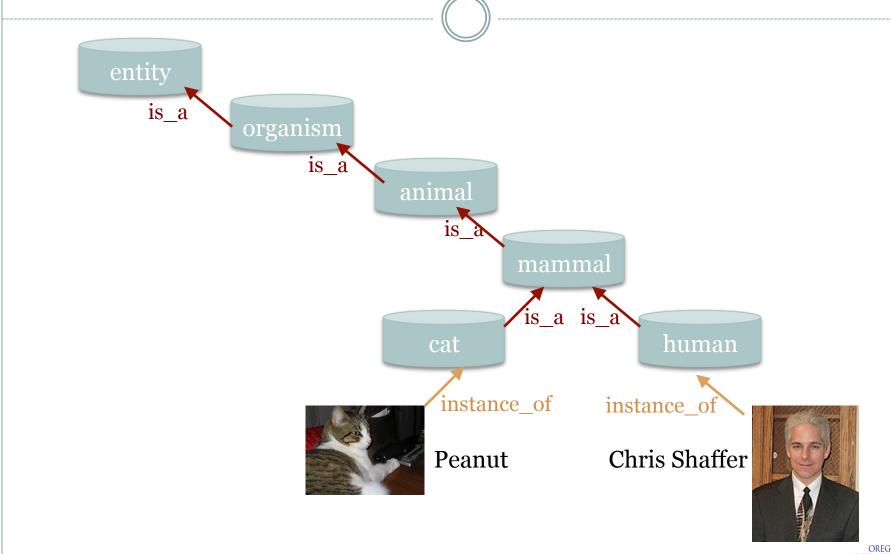
Ontologies are intelligible to both:




Ontologies enable:

- Automatic reasoning to infer related classes
- Annotation consistency
- Error checking
- Alignment with other ontologies
- Computation

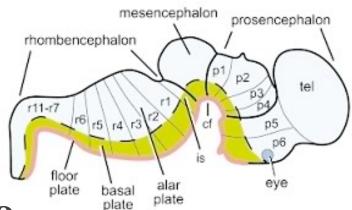
Common controlled vocabularies indicate the same meaning



Is stomach defined by its gross morphology and location, or by the presence/absence of specific cell types?

- Definitions lead to more consistent annotation
- Reusable classes make data interoperable

A simple ontology example: a machine can compute this

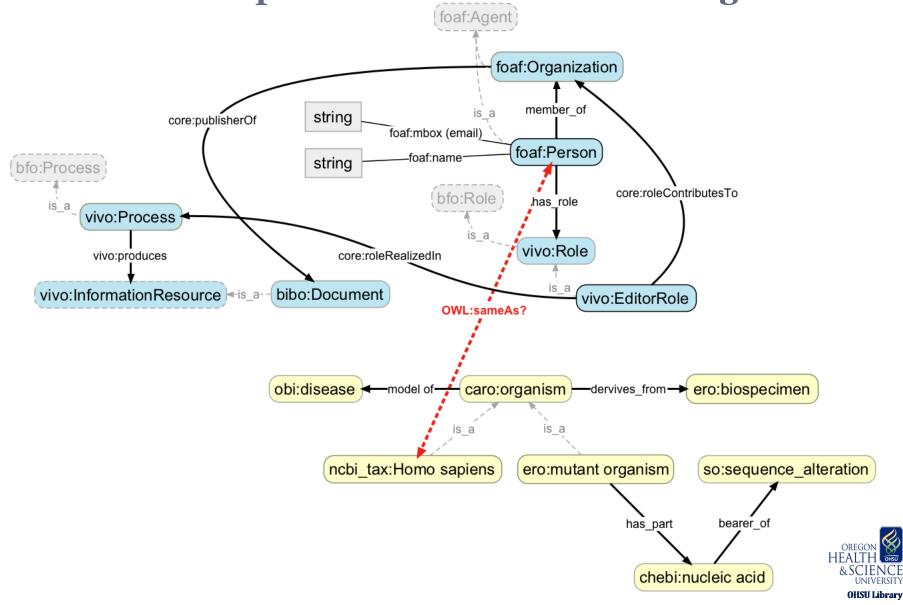


Searching using an ontology: A simple example

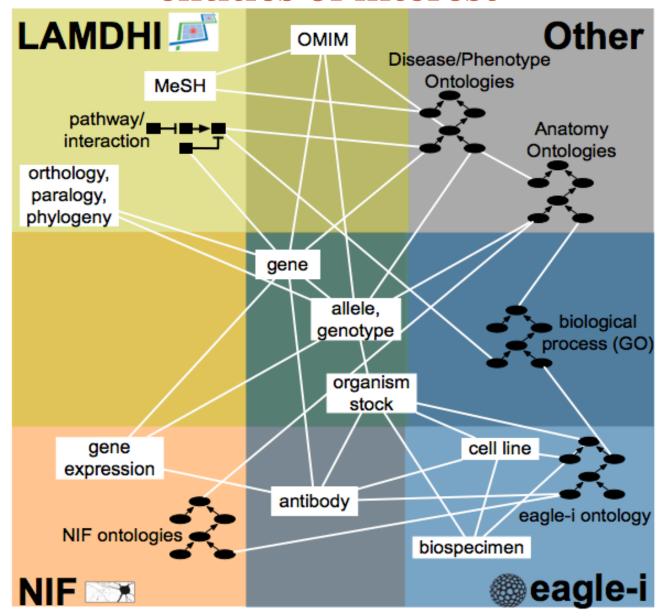
Number of genes annotated to each of the following brain parts in an ontology:

brain 20

part_of hindbrain 15
part_of rhombomere 10


Query brain without ontology 20 Query brain with ontology 45

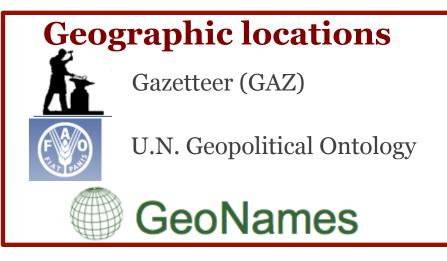
Ontologies facilitate grouping and retrieval of data



Ontology alignment issues and the need for common representation

Humans as persons vs. humans as an organism

There exist many types of relationships between entities of interest



We need global instances for common use

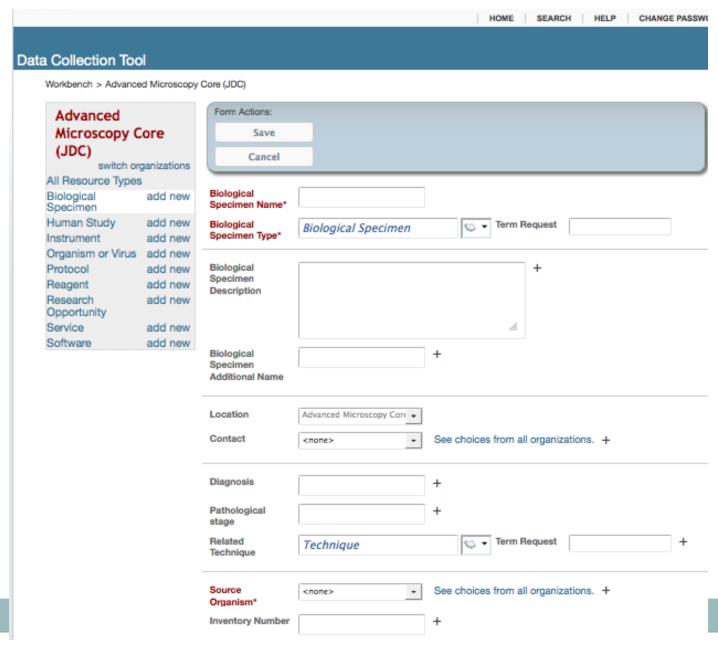
Establishing permanent URIs will be essential for achieving the goals of linked open data

Scientific inquiry is dependent on the resources at hand

This is what is in your kitchen, what are you going to make for dinner?

Scientific inquiry is dependent on the resources at hand

This is what is in your garden, what are you going to make for dinner now?



OHSU Librar

How do we get this wealth of data to researchers and how do we get this data from them?

- Scientists don't often realize that providing the most basic annotation can be valuable for others to retrieve information
- Scientists have few incentives or tools to provide well annotated data

Example ontology driven application

Libraries can help scientists

- How do we help researchers keep better track of their data?
- Online lab notebooks, lab inventory systems, data indexing, etc.
- How can we improve the scholarly communication cycle to have more specific data?
 - PDF markup tools, better journal requirements, etc.

Libraries can help:

- design tools
- build ontologies
- promote semantically aware tools and interoperability

Some examples of how the OHSU library is helping scientists

- Post-traumatic Stress Disorder project to determine the effectiveness of different treatment strategies
- Clinical dental ontology to infer knowledge about long various kinds of restorations last
- Biospecimen representation to support identification of relevant biosamples
- Resource discovery
- Phenotype query across species to identify disease candidate genes
- Cell typing using existing ontologies to identify relevant biological processes based on gene expression

Why libraries should care about ontologies

- Ontologies can be used to support scientific inference and new hypotheses
- Ontologies can be used to publish Linked Data in support of discovery and NIH/NSFmandated data sharing
- Ontologies can be used to link disparate data in support of inference across them

Acknowledgements

OHSU

Nicole Vasilevsky
Erik Segerdell
Carlo Torniai
Matthew Brush
Scott Hoffmann
Jackie Wirz
Carla Pealer
Melanie Wilson
Shahim Essaid

Harvard

Daniela Bourges
Julie McMurry
Ted Bashor

Cornell

Jon Corson-Rikert Stella Mitchell Brian Lowe

LBNL

Christopher Mungall

